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We report the synthesis of a water-soluble, dextran-conjugated
fluorescent K™ sensor, TAC-Limeg.x, whose green fluorescence
strongly increases with [K™], and demonstrate its utility for assay
of cellular K* transport. K* channels and K*-coupled ion
transporters represent an important group of targets for drug
discovery.'™ K™ channels are involved in cardiac and neuronal
excitability, epithelial fluid transport, extracellular and intracellular
ionic homeostasis, and cell proliferation.? K*-coupled ion transport-
ers are involved in transepithelial fluid secretion and absorption,
and in cell volume regulation and ionic homeostasis. Patch-clamp
is the gold standard for assay of K* channel function, though
technically tedious for high-throughput measurements. Radioactive
Rb™ uptake is generally used to assay electrically silent K*-coupled
transporters such as the K*/Cl~ symporter. Membrane voltage-
sensing probes have also been used to assess K channels. There
is need for a robust fluorescence assay of K™ transport for screening
applications as an alternative to patch-clamp and radioactive Rb™.

We previously introduced the long-wavelength, K*-sensitive
fluorescent indicator, TAC-Red, consisting of a K" -binding triaza-
cryptand ionophore (TAC) coupled to a red fluorescing xanthylium
chromophore.* The K* sensing mechanism of TAC-Red, and that
of a newer K™ indicator TAC-Crimson,” involves charge-transfer
quenching in which K™ —triazacryptand binding prevents electron-
transfer-type chromophore quenching. These dyes have bright
fluorescence, excellent K" -selectivity, and millisecond response
kinetics to changes in [K™].** However, they partition significantly
into many cell types, limiting their utility as an extracellular K*
Sensor.

After testing many chromophores and conjugation strategies, we
devised a synthetic route to generate the K™ sensor, TAC-Limeey.
TAC-Limeg.x consists of a triazacryptand K* ionophore in direct
conjugation with a green fluorescent chromophore, connected
through an amide linkage to amino dextran via succinimidyl ester
chemistry (Figure 1a). The synthesis involved conversion of TAC-
CHO 1 to the TAC-Lime (Bodipy dye) methyl ester 2 by reaction
of aldehyde 1 with methyl 3-(2,4-dimethyl-1H-pyrrol-3-yl) pro-
panoate. Oxidation with 2,3-dichloro-5,6-dicyanobenzoquinone
(DDQ) followed by treatment with boron trifluoride (BF;) yielded
the triazacryptand bodipy dye, TAC-Lime ester 2. Hydrolysis of
the methyl ester and conversion of the free acids to the disuccin-
imidy] ester gave TAC-Lime-DiSE 3, which was reacted with amino
dextran to give TAC-Limegey.

TAC-Limegx green fluorescence was strongly K*-sensitive,
increasing by 50% with increasing [K™*] from 0 to 2 mM (Figure
1b). As found for TAC-Red, TAC-Limege, fluorescence was not
sensitive to pH in the biologically relevant range of 5 to 9 or to
anions or other cations, with the exception of the K* analogues
Cst and Rb". TAC-Limeg.x was stable in saline solution at room
temperature for 14 days.

The principle of the method to assay cellular K* transport is
diagrammed in Figure 2a. TAC-Limeg is used as an extracellular
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Figure 1. TAC-Limeg.x synthesis and K* sensitivity. (a) Synthesis
procedures: (i) Methyl-3-(2,4-dimethyl-1H-pyrrol-3-yl) propanoate, TFA,
DCM, rt, 18 h followed by addition of DDQ, 4 h; (ii) BFs Et,0, DIEA,
DCM, 0 °C, 2 h; (iii) 0.2 M aq NaOH, 100 °C, 2 h; (iv) O-(N-succinimidyl)-
N.N,N',N'-tetramethyluronium tetrafluoroborate, DIEA, DMF; (v) amino-
dextan, TEA, H,O/DMSO. (b) Fluorescence spectra of TAC-Limegex. K"
titrations done at 500 nm excitation wavelength (for emission spectra) and
510 nm emission wavelength (for excitation spectrum). Solutions contained
5 uM TAC-Limegx (5 mM HEPES, pH 7) in balanced KCI/NaCl to maintain
constant ionic strength at 200 mM.

K sensor to detect cellular K+ efflux. TAC-Limeg, is membrane
impermeant (<3% cell-associated fluorescence after 1 h). With
appropriate solution ionic composition and electrochemical gradi-
ents, increasing TAC-Limeg. fluorescence provides a quantitative
measure of K* channel/transporter function. Figure 2b shows a
representative single measurement in which HT-29 cells, after K*
channel activation by ATP, were exposed to a K" -free solution
containing TAC-Limegey. K efflux produced a time course of
increasing TAC-Limey, fluorescence, from which [K*] and K*
efflux rates, d[K"]/d¢, are deduced.

Control validation studies are shown in Figure 2c, with K* efflux
data summarized in Figure 2d. K" efflux in HT-29 cells was
relatively slow under control conditions and greatly increased by
incubation with the K*/H" ionophore nigericin, which provides a
rapid pathway for electroneutral K" efflux. Preincubation with a
K" -selective ionophore, valinomycin, also increased K" efflux,
indicating that K* conductance is rate-limiting. The valinomycin
preincubation was done in a high K*, cytoplasmic-like solution to
prevent cellular K" depletion.

The electroneutral K*/Cl~ cotransporter (KCC) is involved in
ionic and osmotic homeostasis in many cell types and in cell growth
and tumor invasion. KCC function has been measured previously
by radioactive Rb™ uptake.®” Figure 3a shows TAC-Lime,.y assay
of KCC function in SiHa cells, a human cervical cancer cell line
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Figure 2. Principle of cell-based assay of K transport. (a) K™ efflux
measurement method showing accumulation of K* in an initially K*-free
extracellular solution resulting from K* efflux from cells. (b) Single
measurement of ATP-induced K™ efflux in HT-29 cells (cell density 6.3 x
10° cells/cm?, cell/bath volume ratio 0.27). (c) K efflux in HT-29 cells
under control conditions, and after incubations with a K* ionophore
(valinomycin) or K*/H" antiporter (nigericin). Cells were preincubated in
high K™ buffer where indicated. Each data point is mean SE (n = 3). (d)
Deduced K" efflux rates, d[K*]/dz, from data in (c). xP < 0.05.
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Figure 3. Application of TAC-Limegex for assay of K'-ion-coupled
transporters and K channels. (a) KCC (K*/CI™) cotransport in SiHa cells
was activated by hypotonicity (200 mosm/L) in the absence or presence of
100 uM DIOA (SE, n = 4). Fluorescence data (top) and summary of K"
efflux rates (bottom). xP < 0.05. (b) Calcium-activated K* channels in
HT-29 cells were activated by 100 uM ATP and inhibited by 10 mM TEA
or 50 uM BAPTA (SE, n = 3). (c) Fluorescence platereader assay of ATP-
stimulated K™ efflux for the cell system studied in (b).

with hypotonicity-stimulated KCC activity.” K" efflux was in-
creased 3-fold following hypotonic challenge (200 mosm/L), with
the increase in K™ efflux inhibited by the KCC inhibitor (R)-(+)-
[(dihydroindenyl)oxy]alkanoic acid (DIOA). The results demon-
strate utility of the TAC-Limegex assay in measuring electroneutral
K™ transport.

Figure 3b demonstrates the utility of the TAC-Limeg.x assay in
measuring K* channel activity in HT-29 cells, which express a
Ca®*-activated K™ channel responsive to ATP, carbachol, and Ca**
ionophores.® ATP treatment greatly increased K* efflux, which was
inhibited by the K* channel blocker tetracthylammonium (TEA)
or by pretreatment with the cytoplasmic Ca®* chelator, 1,2-bis(o-
aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM).
With 3 mM K™ in the outside solution, the signal was 54% of that
at 0 K.

Last, the measurement in Figure 3b was repeated using a
commercial fluorescence platereader, in which the K*-free, TAC-
Limegex-containing solution was delivered by syringe pump to
freshly washed cells (with K*-free buffer) in a 96-well plate.
Inclusion of ATP increased the fluorescence response, which was
blocked by TEA (Figure 3c). Initial curve slopes from multiwell
measurements were (fluorescence units/s + SD): 0.17 £+ 0.01
(control), 0.33 £ 0.03 (ATP), and 0.22 £ 0.02 (+TEA).

Our results establish a simple cell-based fluorescence assay for
plasma membrane K™ transport. The assay takes advantage of the
strong fluorescence enhancement of TAC-Limegex to small increases
in [K*]. Using TAC-Limeg., as an extracellular K" sensor, the
kinetics of increasing TAC-Limeg.x fluorescence provides a quan-
titative readout of K* accumulation into an initially K*-free,
extracellular solution. The TAC-Limeg signal is sufficiently bright
and robust for measurements using commercial fluorescence
platereaders. As such, the assay should be amenable to high-
throughput screening applications for discovery of modulators of
plasma membrane K™ transporters. Because the readout is K* efflux
rather than membrane potential or electrical current, both electro-
genic and electrically silent K -coupled transporters can be assayed.

For assay of K* channels, certain limitations apply because K™
efflux into a K*-free extracellular solution is measured. Cell
membrane potential is generally hyperpolarized under this condition.
The K™ conductance to be assayed should be sufficiently high and
sustained with an interior-negative membrane potential. Also,
counterion conductance should be sufficiently high such that plasma
membrane K* conductance is rate-limiting under assay conditions.
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